【www.okfie.com–考研数学】   为你倒数七年级数学期末考试,还有几个小时就要上战场了。祝你考试成功!以下是学习啦小编为你整理的2017七年级数学下册期末试卷,希望对大家有帮助!   2017七年级数学下册期末试卷   一、选择题(本大题共6小题,每小题3分,共18分)   1.与 -3互为相反数的数是( ▲ )   A.3 B.-3 C. D.-   2.下 列运用等式性质进行的变形,正确的是( ▲ )   A.如果a=b,那么a+c=b-c B. 如果a2=3a,那么a=3   C.如果a=b,那么ac =bc D. 如果ac =bc ,那么a=b   3.直四棱柱、长方体和正方体之间的包含关系是( ▲ )   A. B. C. D.   4.下列说法中,错误的是( ▲ )   A.-2a2b与ba2是同类项 B.对顶角相等   C.过一点有且只有一条直线与已知直线平行 D.垂线段最短   5.如图,直线 、 与直线 相交,给出下列条件:①∠1=∠2;   ②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°,其中能判断   ∥ 的条件有( ▲ )   A.1个 B.2个 C.3个 D.4个 (第5题图)   6.一根竹竿插入到池塘中,插入池塘淤泥中的部分占全长的15 ,水中部分是淤泥中部分的2倍少1米,露出水面的竹竿长1米.设竹竿的长度为x米,则可列出方程( ▲ )   A.15x+ 25 x=1 B.15x+ 25 x+1=x   C.15x+ 25 x-1+1=x D.15x+ 25 x+1+1=x   二、填空题(本大题共10小题,每小题3分,共30分)   7.请写出一个负无理数____▲_______.   8 .今年某市参加中考的考生共约11万人,用科学记数法表示11万人是 ▲ 人.   9.若2x|m|-1 =5是一元一次方程,则m的值为 ▲ .   10.如图所示是一个几何体的三视图,这个几何体的名称是 ▲ .   11.多项式2a2-4a+1与多项式-3a2+2a -5的差是 ▲ .   12..小明根据方程5x+2=6x-8编写了一道应用题,请你把他编写中空缺的部分补充完整.   某手工小组计划教师节前做一批手工品赠给老师,如果每人做5个,那么就比计划少2个; ▲ .请问手工小组有几人?(设手工小组有x人)   13. 如图是一个正方体展开图,把展开图折叠 成正方体后,“我”字一面的相对面上的字是 ▲ .   14. 如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东85°方向,则∠ACB的度数为 ▲ .   15. 如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是 ▲ . (第15题图)   16. 按下面图示的程序计算,若开始输入的值x为正数,最后输 出的结果为11,则满足条件的x的值为 ▲ .   (第16题图)   三、解答题(本大题共1 0小题,共102分)   17.(本题满分12分)计算:   (1)[-5-(-11)]÷(- 32 ÷14 ); (2)-22 – ×2 +(-2)3÷ .   18.(本题满分8分)解方程:   (1)6+2x=14-3x(写出检验过程); (2)x+24- 2x-36 =1.   1 9.(本题满分8分)   (1)如图,点B在线段AD上,C是线段BD的中点,   AD=10,BC=3.求线段CD、AB的长度;   (2) 一个角的补角加上10°后,等于这个角的余角的3倍,求这个角以及它的余角和补角的度数.   20.(本题满分8分)   (1) 化简求值: ,其中 , ;   (2)试说明多项式16+a-{8a-[a-9-3(1-2a)]}的值与字母a的取值无关.   21.(本题满分10分)如图,EF⊥BC,AD⊥BC,∠1 =∠2,∠B=30°.求∠GDB的度数.   请将求∠GDB度数的过程填写完整.   解:因为EF⊥BC,AD⊥BC ,   所以∠BFE=90°,∠BDA=90°,理由是 ▲ ,   即∠BFE=∠BDA,所以EF∥ ▲ ,理由是 ▲ ,   所以∠2 = ▲ ,理由是 ▲ .   因为∠1 =∠2,所以∠1=∠3,   所以AB∥ ▲ ,理由是 ▲ ,   所以∠B+ ▲ = 180°,理由是 ▲ .   又因为∠B= 30°,所以∠GDB = ▲ .   22.(本题满分10分)如图,在6×6的正方形网格中,点   P是∠AOB的边OB上的一点.   (1)过点P画OB的垂线,交OA于点C,过点P画   OA的垂线,垂足为H;   (2)线段PH的长度是点P到直线  ▲  的距离,   线段 ▲  的长度是点C到直线OB的距离;   (3)图中线段PC、PH、OC这三条线段大小关系是   ▲  (用“<”号连接).   (第22题图)   23.(本题满分10分) 周末小明陪爸爸去陶瓷商城购买一些茶壶和茶杯,了解情况后发现甲、乙两家商店都在出售两种同样品牌的茶壶和茶杯,定价相同:茶壶每把定价30元,茶杯每只定价5元.两家都有优惠:甲店买一送一大酬宾(买一把茶壶赠送茶杯一只);乙店全场9折优惠.小明爸爸需茶壶5把,茶杯x只(x不小于5).   (1)若在甲店购买,则总共需要付 ▲ 元;   若在乙店购买,则总共需要付 ▲ 元.   (用含x的代数式表示并化简.)   (2)当需购买15只茶杯时,请你去办这件事,你打算去哪家商店购买?为什么?   24.(本题满分10分) 某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句 的意思是:如果每一间客房住 人,那么有 人无房可住;如果每一间客房住 人,那么就空出一间房.   (1)求该店有客房多少间?房客多少人?   (2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费 钱,且每间客房最多入住 人,一次性定客房 间以上(含 间),房费按 折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?请写出你作出这种决策的理由.   25.(本题满分12分) (1)观察思考   如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;   (2)模型构建 (第25题图)   如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明   你结论的正确性;   (3)拓展应用   8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行多少场比赛?   请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.   26.(本题满分14分)如图,OB、OC是∠AOD的两条射线,OM和ON分别是∠AOB和∠COD内部的一条射线,且∠AOD= ,∠MON= .   (1)当∠AOM=∠BOM,∠DON=∠CON时,试用含   和 的代数式表示∠BOC;   (2)①当∠AOM=2∠BOM,∠DON=2∠CON时,   ∠BOC等于多少?(用含 和 的代数式表示)   ②当∠AOM=3∠BOM,∠DON=3∠CON时,   ∠BOC 等于多少?(用含 和 的代数式表示)   (3)根据上面的结果,请填空:当∠AOM=n∠BOM,   ∠DON=n∠CON时,∠BOC=___▲____.(n是正整数) (第26题图)   (用含 和 的代数式表示).   2017七年级数学下册期末试卷答案   一、选择题(本大题共有6小题,每小题3分,共18分)   题号 1 2 3 4 5 6   答案 A D B C D C   二、填空题(本大题共1 0小题,每小题3分,共30分,)   7.答案不唯一,如- 8. 1.1×105 9.±2(全部正确得3分) 10.圆柱体 11. 5a2-6a+6 12.若每人做6个,就比原计划多8个 13. 梦 14.80° 15.20cm 16. 5,2,0.5(全部正确得3分)   三、解答题(本大题共有10小题,共102分)   17.(本题满分12分)(1)原式=6÷(-6)(各2分,4分)=-1(6分);(2)原式=-4-3+(-8)÷ (3分)=-4-3+16(4分)=9(6分).   18.(本题满分8分)(1)3x+2x=14-6, 5x = 8,x = 1.6(2分),当x=1.6时,左边=6+3.2=9.2,右边=14-4.8=9.2,因为左边等于右边,所以x= 1.6是方程的解(4分);(2)3(x+2)-2(2x-3)=12(2分),3x+6-4x +6=12(3分),x=0(4分).   19.(本题满分8分)(1) ∵BC=3,C是BD的中点,∴CD=BC=3(2分);∵AD=10,∴AB=AD-BC-CD=4(4分);(2)设所求角为x,根据题意得:180-x+10=3(90-x),∴x=40(2分),90-x=50,180-x=140,答:这个角为40°,余角为50°,补角为140°.(4分)   20.(本题满分8分)(1)原式= =-ab2+a2b(3分),当 ,   时,原式=-6(4分);(2)原式= = 16+a-{8a-[7a-12]} (1分) =16+a-{a+12}(2分)=4   (3分),∴多项式16+a-{8a-[a-9-3(1-2a)]}的值与字母a的取值无关(4分).   21. (本题满分10分)解:∵EF⊥BC,AD⊥BC ,∴∠BFE=90°,∠BDA=90°(垂   直的定义),即∠BFE=∠BDA, ∴EF∥AD(同位角相等,两直线平行),∴∠2 =∠3(两直线平行,同位角相等).又∵∠1=∠2,∴∠1 =∠3,∴AB∥DG(内错角相等,两直线平行)   ∴∠B+∠GDB=180°(两直线平行,同旁内角互补).又∵∠B =30°,∴∠GDB = 150°.(每空1分)   22.(本题满分10分)(1)略(4分);(2)OA(6分),CP(8分);(3)PH   23.(本题满分10分) (1)(5x+125),(4.5x+135)(6分);(2)选择甲店购买(7分).理由:到甲店购买需要200元,到乙店购买需要202.5元(9分).∵200<202.5 ,∴选择甲店购买(10分).   24. (本题满分10分) (1)设客房有x间(1分),则根据题意可得:7x+7=9x-9(3分),解得x=8(4分),客人有7 8+7=63(人)(5分);(2)如果每4人一个房间,需要63 4=15 ,需要16间客房,总费用为16×20=320(钱)(7分);如果定18间,其中有四个人一起住,有三个人一起住,则总费用=18 20×0.8=288(钱)<320钱,(9分)所以它们再次入住定18间房时更合算(10分).   25.(本题满分12分) (1)以点A为端点的线段有线段AB、AC、AD,以点B为端点的线段有线段BA、BC、BD,以点C为端点的线段有线段CA、CB、CD,以点D为端点的线段有线段DA、DB、DC,共有6条线段(4分,学生只写出“线段AB、线段AC、线段AD、线段BC、线段BD、线段CD,共有6条线段”也给4分);(2) (5分),理由:设线段上有m个点,该线段上共有线段x条,则x=(m-1)+(m-2)+(m-3)+…+3+2+1,倒序排列有x=1+2+3+…+(m-3)+(m-2)+(m-1),所以2x=m+m+…+m(共m-1个m)=m(m-1),所以x= (8分);(3)把8位同学看作直线上的8个点,每两位同学之间的一场比赛看作为一条线段,直线上8个点所构成的线段条数就等于比赛的场数,因此一共要进行 =28场比赛(12分,不转为模型计算正确得2分).   26.(本题满分14分)(1)由∠AOM=∠BOM,∠DON=∠CON,得∠BOM+∠CON=∠AOM+∠DON,因为∠AOD= ,∠MON= ,所以∠AOM+∠DON= – ,因为∠BOC=∠MON- (∠BOM+∠CON),所以∠BOC= -( – ) =2 – (4分);(2)①当∠AOM=2∠BOM,∠DON=2∠CON时,∠BOM+∠CON= (∠AOM+∠DON)= ( – ),所以∠BOC=∠MON-(∠BOM+∠CON)= – ( – )= – (8分);②当∠AOM=3∠BOM,∠DON=3∠CON时,∠BOM+∠CON= (∠AOM+∠DON)= ( – ),所以∠BOC=∠MON-(∠BOM+∠CON)= – ( – )= – (11分);(3) – (14分). 本文来源:http://www.okfie.com/kaoyan/35957/ 上一篇 下一篇